Skip to content

Applied AI

Kojima's Philosophy in LLMs: From Sticks to Ropes

Hideo Kojima's unique perspective on game design, emphasizing empowerment over guidance, offers a striking parallel to the evolving world of Large Language Models (LLMs). Kojima advocates for giving players a rope, not a stick, signifying support that encourages exploration and personal growth. This concept, when applied to LLMs, raises a critical question: Are we merely using these models as tools for straightforward tasks, or are we empowering users to think critically and creatively?

Good LLM Observability is just plain observability

In this post, I aim to demystify the concept of LLM observability. I'll illustrate how everyday tools employed in system monitoring and debugging can be effectively harnessed to enhance AI agents. Using Open Telemetry, we'll delve into creating comprehensive telemetry for intricate agent actions, spanning from question answering to autonomous decision-making.

If you want to learn about my consulting practice check out my services page. If you're interested in working together please reach out to me via email

What is Open Telemetry?

Essentially, Open Telemetry comprises a suite of APIs, tools, and SDKs that facilitate the creation, collection, and exportation of telemetry data (such as metrics, logs, and traces). This data is crucial for analyzing and understanding the performance and behavior of software applications.