How to Systematically Improve RAG Applications
Retrieval-Augmented Generation (RAG) is a simple, powerful idea: attach a large language model (LLM) to external data, and harness better, domain-specific outputs. Yet behind that simplicity lurks a maze of hidden pitfalls: no metrics, no data instrumentation, not even clarity about what exactly we’re trying to improve.
In this mega-long post, I’ll lay out everything I know about systematically improving RAG apps—from fundamental retrieval metrics, to segmentation and classification, to structured extraction, multimodality, fine-tuned embeddings, query routing, and closing the loop with real user feedback. It’s the end-to-end blueprint for building and iterating a RAG system that actually works in production.
I’ve spent years consulting on applied AI—spanning recommendation systems, spam detection, generative search, and RAG. That includes building ML pipelines for large-scale recommendation frameworks, doing vision-based detection, curation of specialized datasets, and more. In short, I’ve seen many “AI fails” up close. Over time, I’ve realized that gluing an LLM to your data is just the first step. The real magic is how you measure, iterate, and keep your system from sliding backward.
We’ll break everything down in a systematic, user-centric way. If you’re tired of random prompt hacks and single-number “accuracy” illusions, you’re in the right place.